

Welcome to Devmason Server’s documentation!

This is a server that is meant to be used for reporting test results of tests.
Currently it’s main focus is on Python, but there’s no reason that it can’t
support other types of test results.

Contents:

	Build server REST API
	API Usage

	API Reference

	How to install Devmason Server

	Usage
	Using the test runner

Build server REST API

This is a proposed standard for a REST API for build clients to use to
communicate with a build server. It’s inspired by pony-build, and generally
rather Python-oriented, but the goal is language-agnostic.

Contents

	Build server REST API

	API Usage

	Registering a new project

	Reporting a build

	Incremental build reporting

	API Reference

	Representation formats

	URIs

	Resources

	Build

	Build list

	Build progress

	Build step

	Incremental build

	Link

	Project

	Project list

	Tag

	Tag list

	User

	User list

API Usage

Registering a new project

-> PUT /{project}

 {Project}

<- 201 Created
 Location: /{project}/builds/{build-id}

If a project already exists, a 403 Forbidden will be returned.

Users may register with authentication via HTTP Basic:

-> PUT /{project}
 Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

 {Project_}

<- 201 Created
 Location: /{project}/builds/{build-id}

If this is done, then that authorization may be repeated in the future to
update/delete the project or to delete builds. No explicit user registration
step is needed; users will be created on the fly.

Warning

Since the authorization uses HTTP Basic, build servers should probably
support SSL for the security-conscious.

Reporting a build

-> POST /{project}/builds

 {Build}

<- 201 Created
 Location: /{project}/builds/{build-id}

Incremental build reporting

-> POST /{project}/builds

 {Incremental build}

<- 201 Created
 Location: /{project}/builds/{build-id}/progress

-> POST /{project}/builds/{build-id}/progress

 {Build step}

<- 204 No Content
 Location: /{project}/builds/{build-id}

-> POST /{project}/builds/{build-id}/progress

 {Build step}

<- 204 No Content
 Location: /{project}/builds/{build-id}

...

-> DELETE /{project}/builds/{build-id}/progress

<- 204 No Content
 Location: /{project}/builds/{build-id}

API Reference

Representation formats

	JSON.

	UTF-8.

	All datetimes in RFC 2822.

URIs

	URI

	Resource

	Methods

	Notes

	/

	Project list

	GET

	

	/{project}

	Project

	GET, PUT,
DELETE

	Only the user that created a project may
update (PUT) or delete it.

	/{project}/builds

	Build list

	GET, POST

	

	/{project}/builds/latest

	–

	GET

	302 redirect to latest build.

	/{project}/builds/{build-id}

	Build

	GET, PUT,
DELETE

	Builds may not be updated; PUT only
exists if clients wish for some reason
to use a predetermined build id. Only
the user that created a build or the
project owner may delete a build.

	/{project}/builds/{build-id}/progress

	Build progress

	GET, POST,
DELETE

	

	/{project}/tags

	Tag list

	GET

	

	/{project}/tags/{-listjoin|-|tags}

	Build list

	GET

	

	/{project}/tags/{-listjoin|-|tags}/latest

	–

	GET

	302 redirect to latest build given tags

	/users

	User list

	GET

	

	/users/{username}

	User

	GET, PUT,
DELETE

	Authentication required to PUT or
DELETE.

	/users/{username}/builds

	Build list

	GET

	

	/users/{username}/builds/latest

	–

	GET

	302 redirect to latest build by user

All resources support OPTIONS which will return a list of allowed methods
in the Allow header. This is particularly useful to check authentication
for methods that require it.

Resources

Build

Representation:

{
 'success': true, # did the build succeed?
 'started': 'Tue, 20 Oct 2009 10:20:00 -0500',
 'finished': 'Tue, 20 Oct 2009 10:22:00 -0500,

 'tags': ['list', 'of', 'tags'],

 'client': {
 'host': 'example.com', # host that ran the build
 'user': 'http://example.com/' # user to credit for build.
 'arch': 'macosx-10.5-i386' # architecture the build was done on.
 ... 1
 },

 'results': [{Build step}, ...],

 'links': [{Link}, ...]
}

Notes:

	1

	Clients may include arbitrary extra client info in the client record.

Links:

	Rel

	Links to

	self

	This build

	project

	The project this is a builds of.

	tag

	A tag this build is tagged with. There’ll probably be
many tag links.

Build list

Representation:

{
 'builds': [{Build}, ...],

 'count': 100, # total number of builds available
 'num_pages': 4, # total number of pages
 'page': 1 # current page number
 'paginated': true # is this list paginated?
 'per_page': 25, # number of builds per page

 'links': [{Link, ...}]
}

Links:

	Rel

	Links to

	self

	This build list

	project

	The project this is a list of builds for (if applicable).

	user

	The user this is a list of builds for (if applicable).

	tag

	The tag this is a list of builds for (if applicable).

	latest-build

	URI for the redirect to this project’s latest build.

	next

	The next page of builds (if applicable).

	previous

	The previous page of builds (if applicable).

	first

	The first page of builds.

	last

	The last page of builds.

Build progress

Used as an entry point for incremental build reporting

Empty representation – the existence of the resource indicates an in-progress
build. When the build is done, the resource will return 410 Gone.

Build step

Representation:

{
 'success': true, # did this step succeed?
 'started': 'Tue, 20 Oct 2009 10:20:00 -0500',
 'finished': 'Tue, 20 Oct 2009 10:22:00 -0500,
 'name': 'checkout', # human-readable name for the step
 'output': '...' # stdout for this step
 'errout': '...' # stderr for this step
 ... 2
}

Notes:

	2

	Build steps may include arbitrary extra build info in the record.

Incremental build

POST this resource to a build list to signal the start of an incremental build.

Representation

{
 'incremental': true, # never false
 'started': 'Tue, 20 Oct 2009 10:20:00 -0500', # when the build started on
 # the client (not when the
 # packet was posted!)
 'client': {
 'host': 'example.com', # host that ran the build
 'user': 'username' # user to credit for build.
 'arch': 'macosx-10.5-i386' # architecture the build was done on.
 ... 3
 },

 'tags': ['list', 'of', 'tags'],
}

Notes:

	3

	Clients may include arbitrary extra client info in the client record.

Link

Used all over the damn place to knit resources together.

Representation:

{
 'rel': 'self', # identifier for the type of link this is
 'href': 'http://example.com/', # full URL href
 'allowed_methods': ['GET'], # list of methods this client can perform on said resource
}

Project

Representation:

{
 'name': 'Project Name',
 'owner': 'username', # the user who created the project, if applicable.

 'links': [{Link}, ...]
}

Links:

	Rel

	Links to

	self

	This project.

	build-list

	This project’s build list.

	latest-build

	URI for the redirect to this project’s latest build.

	tag-list

	This project’s tag list.

Project list

{
 'projects': [{Project}, ...],
 'links': [{Link}, ...]
}

Links:

	Rel

	Links to

	self

	This server.

Tag

Tag detail.

{
 'tags': ['list', 'of', 'tags'], # Or just a single ['tag'] if this
 # is one tag.

 'builds': [{Build}, ...],

 'count': 100, # total number of builds w/this tag
 'num_pages': 4, # total number of pages
 'page': 1 # current page number
 'paginated': true # is this list paginated?
 'per_page': 25, # number of builds per page

 'links': [{Link, ...}]
}

Links:

Tag list

Representation:

{
 'tags': ['tag1', 'tag2', 'tag3'],
 'links': [{Link, ...}]
}

Links:

	Rel

	Links to

	self

	This tag list

	project

	The project in question.

	tag

	Each tag used by the project gets a link.

User

Representation:

{
 'username': 'username',
 'links': [{Link}, ...]
}

Links:

	Rel

	Links to

	self

	This user

	builds

	Build list for this user.

User list

Representation:

{
 'users': [{User}, ...],

 'count': 100, # total number of users available
 'num_pages': 4, # total number of pages
 'page': 1 # current page number
 'paginated': true # is this list paginated?
 'per_page': 25, # number of users per page
 'links': [{Link, ...}]
}

Links:

	Rel

	Links to

	self

	This user

How to install Devmason Server

Devmason is easy to install. It comes with a setup.py, so you can easily
install it:

virtualenv devmason
cd devmason/
. bin/activate
pip install -e git://github.com/ericholscher/devmason-server.git#egg=devmason-server
cd src/devmason-server
pip install -r pip_requirements.txt
cd test_project
./manage.py syncdb --noinput
./manage.py loaddata devmason_server_test_data.json
./manage.py runserver

That’s all that it takes to get a running server up. Look at the test_project for examples on how to set up your urls and settings.

Usage

Using the server is pretty simple. Most of the interaction is done through the API, which has a basic client library. The client library is located on github: http://github.com/ericholscher/devmason-utils/.

Using the test runner

Once you have devmason_utils installed, it ships with it’s own test runner that reports your test results to the server. Simply add the following in your settings:

TEST_RUNNER = 'devmason_utils.test_runner.run_tests'
PB_USER = 'your_user'
PB_PASS = 'your_pass'

When you do this the username will be created for your on the server, then your results should automatically be sent to http://devmason.com.

Note

A username and password is only required to create a project. If you’re
just sending results to someone else’s project then you only need to set up
your test runner.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Devmason Server’s documentation!

 		
 Build server REST API

 		
 API Usage

 		
 Registering a new project

 		
 Reporting a build

 		
 Incremental build reporting

 		
 API Reference

 		
 Representation formats

 		
 URIs

 		
 Resources

 		
 How to install Devmason Server

 		
 Usage

 		
 Using the test runner

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

